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The shear-current effect in a nonrotating homogeneous turbulent convection with a large-scale constant shear
is studied. The large-scale velocity shear causes anisotropy of turbulent convection, which produces the mean
electromotive force E�W��W�J and the mean electric current along the original mean magnetic field, where
W is the background mean vorticity due to the shear and J is the mean electric current. This results in a
large-scale dynamo even in a nonrotating and nonhelical homogeneous sheared turbulent convection, whereby
the � effect vanishes. It is found that turbulent convection promotes the shear-current dynamo instability, i.e.,
the heat flux causes positive contribution to the shear-current effect. However, there is no dynamo action due
to the shear-current effect for small hydrodynamic and magnetic Reynolds numbers even in a turbulent con-
vection, if the spatial scaling for the turbulent correlation time is ��k��k−2, where k is the small-scale wave
number.
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I. INTRODUCTION

It is generally believed that the large-scale magnetic fields
of the Sun, solar-type stars, and galaxies are originated by a
dynamo process, i.e., due to a joint action of small-scale
helical turbulent motions �the � effect� and large-scale dif-
ferential rotation �see Refs. �1–9��. It has been recently rec-
ognized �10–15� that in a sheared nonhelical and nonrotating
homogeneous turbulence whereby the � effect vanishes, the
mean-field dynamo is possible due to shear-current effect.

The mechanism of the shear-current dynamo is as follows.
The deformations of the original nonuniform magnetic field
lines are caused by upward and downward turbulent eddies.
In a sheared turbulence the inhomogeneity of the original
mean magnetic field breaks a symmetry between the influ-
ence of the upward and downward turbulent eddies on the
mean magnetic field. This creates the mean electric current J
along the mean magnetic field B and produces the shear-
current dynamo. In particular, the large-scale velocity shear
creates anisotropy of turbulence. This produces the mean
electromotive force E�W��W�J, where W is the back-
ground mean vorticity due to the shear. Joint effects of the
mean electromotive force E�W� and stretching of the mean
magnetic field due to the large-scale shear motions cause the
mean-field dynamo instability.

A sheared turbulence is a universal feature in astrophys-
ics. The shear-current effect might be an origin for the large-
scale magnetic fields in colliding protogalactic clouds and in
merging protostellar clouds �15�. This effect might be also
important in accretion discs where the mean velocity shear
comes together with rotation, so that both the shear-current
effect and the � effect might operate. Since the shear-current
effect is not quenched �see Refs. �11,16�� contrary to the
quenching of the nonlinear � effect, the shear-current effect
might be the only surviving effect, and it can explain the

origin of large-scale magnetic fields in astrophysical plasmas
with large-scale sheared motions.

The shear-current effect is a fundamental phenomenon
which should be studied in different situations, e.g., in dif-
ferent types of turbulence. The goal of the present study is to
investigate the shear-current effect in a nonrotating homoge-
neous turbulent convection with a large-scale constant veloc-
ity shear. Note also that in many astrophysical applications
turbulent convection plays an important role, e.g., in the con-
vective zones of the Sun and solar-type stars. We have shown
that turbulent convection promotes the shear-current dynamo
instability. In particular, the heat flux causes positive contri-
bution to the shear-current effect. However, the shear-current
dynamo is impossible for small hydrodynamic or magnetic
Reynolds numbers even in a turbulent convection, if the spa-
tial scaling for the turbulent correlation time is ��k��k−2,
where k is the small-scale wave number.

This paper is organized as follows. In Sec. II we formu-
late the governing equations, the assumptions and the proce-
dure of the derivations. In Sec. III we study properties of the
shear-current effect in a sheared turbulent convection and
discuss the shear-current dynamo. In Sec. IV we draw con-
cluding remarks and perform comparison of the theoretical
predictions with the direct numerical simulations. Finally, in
the Appendix we perform a detailed derivation of the shear-
current effect in a turbulent convection.

II. THE GOVERNING EQUATIONS

In order to study the shear-current effect in a turbulent
convection we use a procedure which is similar to that ap-
plied in �11,17�. In particular, we employ a mean-field ap-
proach whereby the pressure, entropy, velocity, and magnetic
fields are separated into the mean and fluctuating parts,
where the fluctuating parts have zero mean values. To deter-
mine the effect of shear on a turbulent convection we use
equations for fluctuations of velocity, magnetic field, and en-
tropy
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�t
= − �U · ��u − �u · ��U − �� p

�0
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+
1

�0
��b · ��B + �B · ��b� + uN, �1�

�b

�t
= �B · ��u − �u · ��B + �b · ��U − �U · ��b + bN,

�2�

�s

�t
= −

N2

g
�u · e� − �U · ��s + sN, �3�

where B, U, and S are the mean magnetic field, the mean
velocity field, and the mean entropy, u, b, and s are fluctua-
tions of velocity, magnetic field, and entropy, �0 is the fluid
density, N2=−g ·�S, and g is the acceleration of gravity, e is
the unit vector directed opposite to g, the magnetic perme-
ability of the fluid is included in the definition of the mag-
netic field, p are the fluctuations of total �hydrodynamic and
magnetic� pressure, vN, bN, and sN are the nonlinear terms
which include the molecular viscous and diffusion terms.
Equations �1�–�3� for fluctuations of fluid velocity, entropy,
and magnetic field are written in the Boussinesq approxima-
tion. We consider the hydrostatic nearly isentropic basic ref-
erence state. The turbulent convection is regarded as a small
deviation from a well-mixed adiabatic reference state.

Using Eqs. �1�–�3� written in a Fourier space we derive
equations for the instantaneous two-point second-order cor-
relation functions of the velocity fluctuations �uiuj�, the mag-
netic fluctuations �bibj�, the entropy fluctuations �ss�, the
cross-helicity tensor �biuj�, the turbulent heat flux �sui� and
�sbi�. The equations for these correlation functions are given
by Eqs. �A2�–�A7� in the Appendix. We split the tensor of
magnetic fluctuations into nonhelical, hij = �bibj�, and helical,
hij

�H�, parts. The helical part hij
�H� depends on the magnetic

helicity, and it is determined by the dynamic equation which
follows from the magnetic helicity conservation arguments
�see, e.g., Refs. �18–25�, and a review �9��.

The second-moment equations include the first-order spa-

tial differential operators N̂ applied to the third-order mo-
ments M�III�. A problem arises how to close the system, i.e.,

how to express the set of the third-order terms N̂M�III�

through the lower moments M�II� �see, e.g., Refs. �26–28��.
We use the spectral � approximation which postulates that

the deviations of the third-moment terms, N̂M�III��k�, from
the contributions to these terms afforded by the background

turbulent convection, N̂M�III,0��k�, are expressed through
the similar deviations of the second moments, M�II��k�
−M�II,0��k�,

N̂MIII�k� − N̂M�III,0��k� = −
1

��k�
�M�II��k� − M�II,0��k�� ,

�4�

�see Refs. �11,28–31��, where ��k� is the scale-dependent
relaxation time, which can be identified with the correlation

time of the turbulent velocity field. The quantities with the
superscript �0� correspond to the background shear-free tur-
bulent convection with a zeromean magnetic field. We apply
the spectral � approximation only for the nonhelical part hij
of the tensor of magnetic fluctuations. Note that a justifica-
tion of the � approximation for different situations has been
performed in numerical simulations and analytical studies in
�9,11,32–36�.

We assume that the characteristic time of variation of the
mean magnetic field B is substantially larger than the corre-
lation time ��k� for all turbulence scales. This allows us to
get a stationary solution for the equations for the second-
order moments, M�II�. We split all second-order correlation
functions, M�II�, into symmetric hij

�s�= �hij�k�+hij�−k�� /2 and
antisymmetric hij

�a�= �hij�k�−hij�−k�� /2 parts with respect to
the wave vector k. For the integration in k-space we must
specify a model for the background shear-free turbulent con-
vection �i.e., a turbulent convection with B=0�. The back-
ground turbulent convection is maintained by an imposed
vertical heat flux Fz

*= �suz� with div F*=0 at a low boundary
of convective region. We used the following model for the
homogeneous background turbulent convection:

�uiuj��0��k� = �u2�Pij�k�W�k� , �5�

�bibj��0��k� = �b2�Pij�k�W�k� , �6�

�sui�i
�0��k� = 3�suz�emPim�k�W�k� , �7�

where Pij�k�=�ij −kikj /k2, �ij is the Kronecker tensor, W�k�
=E�k� /8�k2, the energy spectrum is E�k�=k0

−1�q−1�
��k /k0�−q, k0=1/ l0 and the length l0 is the maximum scale
of turbulent motions. The turbulent correlation time is ��k�
=C�0�k /k0�−�, where the coefficient C= �q−1+�� / �q−1�.
This value of the coefficient C corresponds to the standard
form of the turbulent diffusion coefficient in the isotropic
case, i.e., 	��k��ui uj��0��k�dk=	T 
ij, where 	T=�0�u2� /3.
Here the time �0= l0 /
�u2� and 
�u2� is the characteristic
turbulent velocity in the scale l0. For the Kolmogorov’s type
background turbulence �i.e., for a turbulence with a constant
energy flux over the spectrum�, the energy spectrum E�k��
−d� /dk, the exponent �=q−1 and the coefficient C=2. In
the case of a turbulence with a scale-independent correlation
time, the exponent �=0 and the coefficient C=1. Motions in
the background turbulent convection are assumed to be non-
helical. Using the solution of the derived second-moment
equations, we determine the contributions to the mean elec-
tromotive force, Ei


=�imn	�bnum�kdk, caused by the sheared
turbulence �see the Appendix�, where �ijk is the fully anti-
symmetric Levi-Civita tensor. This procedure allows us to
determine the contributions to the shear-current effect caused
by the sheared turbulent convection.

III. THE SHEAR-CURRENT DYNAMO

We consider a homogeneous turbulent convection with a
constant mean velocity shear, U= �0,Sx ,0� and W= �0,0 ,S�.
We consider a most simple form of the mean magnetic field,
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B= (Bx�z� ,By�z� ,0). The contributions to the mean electro-
motive force caused by the sheared turbulence, are Ei




=bijk

 �kBj, where the tensor bijk


 =bijk
u +bijk

F is given by

bijk
u = l0

2 I2

30
�ikn�Q0�nUj + 2Q1��U�nj� , �8�

bijk
F = a*l0

2 I3

140
�Q3�ikmemn�nUj

+ �Q2�ikn + Q4��ikmemn + �inmemk����U�nj� . �9�

Equations �8� and �9� are derived in the Appendix. Here
��U�ij = ��iUj +� jUi� /2 and the coefficients Qn are Q0= �3
−2��−��5+2��, Q1=��7+6��−1, Q2=�+2, Q3=18−19�,
Q4=�−6, the parameter �=Em /Ev, Em and Ev are the mag-
netic and kinetic energies per unit mass in the background
turbulent convection, and

I2 =
 �2�k�E�k�dk =
�q − 1 + ��2

�q − 1 + 2���q − 1�
,

I3 =
 �3�k�E�k�dk =
�q − 1 + ��3

�q − 1 + 3���q − 1�2 .

For the Kolmogorov’s type turbulence, the exponent �=q
−1 and the parameters I2=4/3 and I3=2. In the case of a
turbulence with a scale-independent correlation time, the ex-
ponent �=0 and the parameters I2= I3=1. The tensor bijk

F in
Eq. �9� describes the contributions of the heat flux to the
shear-current effect, while tensor bijk

u determines the noncon-
vective contributions �which are independent of the heat
flux� to the shear-current effect. In Eqs. �8� and �9� we have
taken into account only the terms which contribute to the
shear-current effect. In particular, we have taken into account
that By 
Bx �see Eq. �20� below� and considered a weak
mean velocity shear U= �0,Sx ,0�, where S�0�1. The con-
vective contribution to the dynamo instability due to the
shear-current effect depends on the parameter a*
=2g�0Fz

* / �u2� which is determined by the budget equation
for the total energy. The parameter a* is given by

a*
−1 = 1 +

�T��U�2 + 	T��B�2/�0

g�suz�
, �10�

where �T is the turbulent viscosity and 	T is the coefficient of
turbulent magnetic diffusion.

Therefore, in the kinematic approximation the mean mag-
netic field is determined by

�Bx

�t
= − 
BSl0

2By� + 	TBx�, �11�

�By

�t
= SBx + 	TBy�, �12�

where Bi�=�2Bi /�z2. Here we neglect small contributions to
the coefficient of turbulent magnetic diffusion caused by the
shear motions because S�0�1. The dimensionless parameter

B describes the shear-current effect. Straightforward calcu-

lations using Eqs. �8� and �9� yield the parameter 
B=
B
u

+
B
F, where


B
u =

I2

30
�Q0 + Q1� , �13�


B
F = a*

I3

280
�Q2 − Q4 + 2�Q3 + Q4�sin2 �� , �14�

� is the angle between the unit vector e and the background
vorticity W due to the large-scale shear. Equations �13� and
�14� yield the following final expressions for the parameter

B:


B =
I2

15
�1 − � + ��1 + 2�� +

a*3I3

7I2
�2 + 3�2 − 3��sin2 ��� ,

�15�

where the terms �a* in Eq. �15� describe the contribution of
the turbulent convection to the shear-current effect. Equa-
tions �11� and �12� determine the shear-current dynamo in-
stability. In particular, the first term �SBx on the right-hand
side of Eq. �12� determines the stretching of the magnetic
field Bx by the shear motions and produces the field By. On
the other hand, the interaction of the nonuniform magnetic
field By with the background vorticity W produces the elec-
tric current along the field By. This effect is determined by
the first term on the right-hand side of Eq. �11� and causes
the generation of the magnetic field component Bx. The
growth rate of the mean magnetic field due to the shear-
current dynamo instability is given by

� = Sl0


BKz − 	TKz

2, �16�

where Kz is the large-scale wave number. The necessary con-
dition for the dynamo instability is 
B�0.

The shear-current dynamo instability depends on the spa-
tial scaling of the correlation time ��k��k−� of the turbulent
velocity field, where k is the small-scale wave number. In the
absence of turbulent convection, the terms �a* in Eq. �15�
vanish, and the shear-current dynamo in a nonconvective tur-
bulence with �=0 occurs for ��1. For the Kolmogorov’s
type turbulence, the exponent �=2/3 and Eq. �15� reads


B = 4
135�1 + 7� + 6

7a*� . �17�

In this case the parameter 
B is independent of the angle �
between the unit vector e and the background vorticity W.
For a turbulent convection with a scale-independent correla-
tion time, the exponent �=0 and the parameter 
B is given
by


B = 1
15�1 + � + 9

7a*�1 + 3 sin2 ��� . �18�

In these cases the shear-current dynamo instability causes the
generation of the large-scale magnetic field. It follows from
Eqs. �15�–�18� that turbulent convection promotes the shear-
current dynamo instability. In particular, the heat flux causes
positive contribution to the shear-current effect when 2
+3�2−3��sin2 ��0.

However, for small hydrodynamic and magnetic Reynolds
numbers, the turbulent correlation time is of the order of
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��k��1/ ��k2� or ��k��1/ �	k2� depending on the magnetic
Prandtl number, i.e., ��k��k−2. In this case �=2, and the
parameter 
B�0 even in a turbulent convection with �=0.
This implies that for small hydrodynamic and magnetic Rey-
nolds numbers there is no dynamo action due to the shear-
current effect. This result is in agreement with the recent
studies �37,38� performed in the framework of the second
order correlation approximation �SOCA� for sheared non-
convective flows. This approximation is valid only for small
hydrodynamic Reynolds numbers. Even in a high conductiv-
ity limit �large magnetic Reynolds numbers�, SOCA can be
valid only for small Strouhal numbers, while for large hydro-
dynamic Reynolds numbers �for a developed turbulence�, the
Strouhal number is 1.

In order to determine the threshold required for the exci-
tation of the shear-current dynamo instability, we consider
the solution of Eqs. �11� and �12� with the following bound-
ary conditions: B�t , �z�=L�=0 for a layer of the thickness 2L
in the z direction. The solution for the mean magnetic field is
determined by

By�t,z� = B0 exp��t�cos�Kzz + �� , �19�

Bx�t,z� = l0Kz


BBy�t,z� . �20�

For the symmetric mode the angle �=�n and the large-scale
wave number Kz= �� /2��2m+1�L−1, where n ,m=0,1 ,2 , . . ..
For this mode the mean magnetic field is symmetric relative
to the middle plane z=0. Let us introduce the dynamo num-
ber D= �l0S* /L�2
B, where parameter S*=SL2 /	T is the di-
mensionless shear number. For the symmetric mode the
mean magnetic field is generated due to the shear-current
effect when the dynamo number D�Dcr= ��2 /4��2m+1�2.
For the antisymmetric mode the angle �= �� /2��2n+1� with
n=0,1 ,2 , . . ., the wave number Kz=�mL−1 and the magnetic
field is generated when the dynamo number D�Dcr=�2m2,
where m=1,2 ,3 , . . .. The maximum growth rate of the mean
magnetic field in the shear-current dynamo instability, �max
=S2l0

2
B /4	T, is attained at Kz=Sl0


B /2	T. Therefore, the

characteristic scale of the mean magnetic field variations
LB=2� /Kz=4u0 / �S

B�. For the shear-current dynamo, the
ratio of the field components Bx /By is small �see Eq. �20��.
Remarkably, in the �� dynamo, the poloidal component of
the mean magnetic field is much smaller than the toroidal
field.

IV. DISCUSSION

In the present study we investigate the shear-current effect
in a nonrotating homogeneous turbulent convection with a
large-scale constant velocity shear. We show that the condi-
tion for the shear-current dynamo is independent of the ex-
ponent of the energy spectrum of turbulent convection, but it
depends on the scaling exponent � of the turbulent correla-
tion time ��k��k−�, where k is the small-scale wave number.
We discuss three cases in detail: �i� the Kolmogorov’s type
turbulence with the exponent �=2/3; �ii� a turbulent convec-
tion with a scale-independent correlation time ��=0�; �iii� a
turbulent convection with small hydrodynamic and magnetic

Reynolds numbers with the scaling ��k��k−2. We have found
that turbulent convection promotes the shear-current dynamo
instability. In particular, the heat flux causes positive contri-
bution to the shear-current instability. However, the shear-
current dynamo does not occur for small hydrodynamic and
magnetic Reynolds numbers even in a turbulent convection,
if the spatial scaling for the turbulent correlation time is
��k��k−2.

For simplicity we consider weak linear velocity shear, U
= �0,Sx ,0�, where the parameter S�0�1. The main effect of
the weak linear velocity shear on turbulent convection is a
generation of additional anisotropic velocity fluctuations. We
consider turbulent convection in the region which is far from
the boundaries, because the constant linear velocity shear
cannot exist near the boundaries whereby the boundary lay-
ers form. The generation of the magnetic field in a nonlinear
velocity shear depends on boundary conditions and requires
numerical study. Turbulent convection can be inhomoge-
neous in this case.

The main goal of this paper is to study an effect of the
heat flux on the shear-current dynamo instability in a most
simple model of turbulent convection with a linear shear. The
shear-current dynamo acts also in inhomogeneous turbulent
convection. However, in inhomogeneous turbulence with a
large-scale constant velocity shear the kinetic helicity and the
� effect do not vanish �see Refs. �10,11,37��. In this case the
shear-current dynamo acts together with the �-shear dynamo
which is similar to the �� dynamo. The joint action of the
shear-current and the �-shear dynamos have been recently
discussed in �16,39,40�. The shear-current effect does not
quench �see Refs. �11,16�� contrary to the quenching of the
nonlinear � effect, the turbulent magnetic diffusion, the ef-
fective drift velocity, etc. Therefore, the shear-current effect
might be the only surviving effect, and it can explain the
origin of large-scale magnetic fields in sheared astrophysical
turbulence.

The shear-current dynamo instability is saturated by the
nonlinear effects. The nonlinear mean-field dynamo due to a
shear-current effect in a nonhelical homogeneous turbulence
with a mean velocity shear has been investigated recently in
�14� �see also Ref. �40��, whereby the transport of magnetic
helicity as a dynamical nonlinearity has been taken into ac-
count. The magnetic helicity flux strongly affects the satu-
rated level of the mean magnetic field in the nonlinear stage
of the dynamo action. In particular, numerical solutions �14�
of the nonlinear mean-field dynamo equations which take
into account the shear-current effect, show that if the diver-
gence of the magnetic helicity flux is not small, the saturated
level of the mean magnetic field is of the order of the equi-
partition field determined by the turbulent kinetic energy.
These results are in a good agreement with direct numerical
simulations �12,13�, whereby the generation of the large-
scale magnetic field in a nonhelical turbulence with an im-
posed mean velocity shear has been investigated.

In the direct numerical simulations �12,13� the noncon-
vective turbulence is driven by a forcing that consists of
eigenfunctions of the curl operator with the wave numbers
4.5�kf �5.5 and of large-scale component with wave num-
ber k1=1. The forcing produces the mean flow U
=U0 cos�k1x�cos�k1x�. The numerical resolution in these
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simulations is 128�512�128 mesh points, and the param-
eters used in these simulations are as following: the magnetic
Reynolds number Rm=urms/ �	kf�=80, the magnetic Prandtl
number Prm=� /	=1 and U0 /urms=5. The growth rate of the
mean magnetic field is about ��0�2�10−2. This allows us
to estimate the parameter 
B characterizing the shear-current
effect, 
B�3.3�10−2. On the other hand, our theory pre-
dicts 
B= �3–6��10−2 depending on the parameter �. Note
that in the numerical simulations �12,13� the shear is not
small �i.e., the parameter S�0�1�, which explains some dif-
ference between the theoretical predictions and numerical
simulations. Therefore, the numerical simulations �12,13�
clearly demonstrate the existence of the large-scale dynamo
in the absence of mean kinetic helicity and alpha effect, in
agreement with the theoretical predictions discussed in the
present paper.
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APPENDIX: THE ELECTROMOTIVE FORCE
IN A SHEARED TURBULENT CONVECTION

In order to study the shear-current effect in a sheared tur-
bulent convection we use a procedure applied in �11,17� for
similar problems. Let us derive equations for the second mo-
ments. To exclude the pressure term from the equation of
motion �1� we calculate �� ���u�. Then we rewrite the
obtained equation and Eqs. �2� and �3� in a Fourier space. We
also apply the two-scale approach, e.g., we use large scale
R= �x+y� /2, K=k1+k2 and small scale r=x−y, k= �k1

−k2� /2 variables �see, e.g., Ref. �41��. This implies that we
assume that there exists a separation of scales, i.e., the maxi-
mum scale of turbulent motions l0 is much smaller than the
characteristic scale LB of inhomogeneities of the mean mag-
netic field. We derive equations for the following correlation
functions:

f ij�k� = L̂�ui;uj�, hij�k� = L̂�bi;bj� ,

gij�k� = L̂�bi;uj�, Fi�k� = L̂�s;ui� ,

Gi�k� = L̂�s;bi�, ��k� = L̂�s;s� , �A1�

where

L̂�a;c� =
 �a�k + K/2�c�− k + K/2��exp�iK · R�dK .

The equations for these correlation functions are given by

�f ij�k�
�t

= i�k · B��ij + Iij
f + Iijmn


 �U�fmn + N̂f ij , �A2�

�hij�k�
�t

= − i�k · B��ij + Iij
h + Eijmn


 �U�hmn + N̂hij ,

�A3�

�gij�k�
�t

= i�k · B��f ij�k� − hij�k� − hij
�H�� + Iij

g + Jijmn

 �U�gmn

+ genPjn�k�Gi�− k� + N̂gij , �A4�

�Fi�k�
�t

= − i�k · B�Gi�k� + Ii
F + Him


 �U�Fm + genPin�k���k�

+ N̂Fi, �A5�

�Gi�k�
�t

= − i�k · B�Fi�k� + Ii
G + ��mUi�Gm�k� + N̂Gi,

�A6�

���k�
�t

= −
N2

g
Fz�k� + N̂� , �A7�

where hereafter we omit argument t and R in the correlation
functions and neglect small terms �O��2�. Here �=� /�R,
and we also neglect a small term �N2 /g in Eq. �A7�. In Eqs.

�A2�–�A7�, �ij�k�=gij�k�−gji�−k�, Pij�k�=�ij −kikj /k2, N̂f ij

=gen�Pin�k�Fj�k�+ Pjn�k�Fi�−k��+N̂ f̃ i j, and N̂ f̃ i j, N̂hij, N̂gij,

N̂Fi, N̂Gi, and N̂� are the third-order moment terms appear-
ing due to the nonlinear terms. The terms which are propor-

tional to the heat flux Fi in the tensor N̂f ij, can be considered
as a stirring force for the turbulent convection. Note that a
stirring force in the Navier-Stokes turbulence is an external
parameter. The tensors Iijmn


 �U�, Eijmn

 �U�, Jijmn


 �U�, and
Hij


�U� are given by

Iijmn

 �U� = �2kiq�mp� jn + 2kjq�im�pn − �im� jq�pn − �iq� jn�pm

+ �im� jnkq
�

�kp
��pUq,

Eijmn

 �U� = ��im� jq�pn + � jm�iq�pn + �im� jnkq

�

�kp
��pUq,

Jijmn

 �U� = �2kjq�im�pn − �im�pn� jq + � jn�pm�iq

+ �im� jnkq
�

�kp
��pUq,

Hij

�U� = 2kin� jUn − � jUi,

where kij =kikj /k2. The source terms Iij
f , Iij

h , Iij
g , Ii

F, and Ii
G

which contain the large-scale spatial derivatives of the mean
magnetic field, are given in �11,17� �see also Eqs. �A12� and
�A13� below�. Next, in Eqs. �A2�–�A7� we split the tensor
for magnetic fluctuations into nonhelical, hij, and helical,
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hij
�H�, parts. The helical part of the tensor of magnetic fluctua-

tions hij
�H� depends on the magnetic helicity and it follows

from the magnetic helicity conservation arguments �see, e.g.,
Refs. �18–22,25��. We also use the spectral � approximation
which postulates that the deviations of the third-moment

terms, N̂M�III��k�, from the contributions to these terms af-

forded by the background turbulent convection, N̂M�III,0��k�,
are expressed through the similar deviations of the second
moments, M�II��k�−M�II,0��k� �see Eq. �4��.

We take into account that the characteristic time of varia-
tion of the mean magnetic field B is substantially larger than
the correlation time ��k� for all turbulence scales. This al-
lows us to get a stationary solution for Eqs. �A2�–�A7� for
the second-order moments, M�II��k�, which are the sum of
contributions caused by a shear-free turbulent convection
and a sheared turbulent convection. The contributions to the
mean electromotive force caused by a shear-free turbulent
convection are given in �17�. On the other hand, the contri-
butions to the mean electromotive force caused by the
sheared turbulent convection are Em


 =�mji	gij

�k�dk. In par-

ticular, in the kinematic approximation the contributions to
the cross-helicity tensor gij


 caused by the sheared turbulent
convection, are given by

gij

�k� = ��Jijmn


 g̃mn + Iij
�g,
� + genPjn�k�Gi


�− k�� , �A8�

where

Gi

�k� = �2��mUi�Im

G, �A9�

g̃ij = ��Iij
g + �genPjn�k�Ii

G� , �A10�

Iij
�g,
� = ���2Pjs�k� − � js�Eikmn


 hmn
�0� − �isIkjmn


 fmn
�0��Bs,k,

�A11�

Ii
G = − ��ij�mk +

1

2
�imkj

�

�kk
�Fm

�0�Bj,k, �A12�

Iij
g = ��2Pjn�k� − � jn�hik

�0� − �infkj
�0� −

1

2
kn

�

�kk
�f ij

�0� + hij
�0���Bn,k,

�A13�

and Bi,j =� jBi. We take into account that in Eq. �A8� the
terms with symmetric tensors with respect to the indexes “i”
and “j” do not contribute to the mean electromotive force
because Em


 =�mji	gij

�k�dk. For the integration in k-space we

must specify a model for the background shear-free turbulent
convection �with B=0�, which is determined by Eqs. �5�–�7�
in Sec. III.

The contributions to the mean electromotive force caused
by the sheared turbulent convection, are Ei


=bijk

 �kBj, where

the tensor bijk

 =bijk

u +bijk
F is given by Eqs. �8� and �9� in Sec.

III. For derivation of Eqs. �8� and �9� we use the following
identities:


 kikjkmkn

k4 sin �d�d� =
4�

15
�ijmn,


 kikjkmknkpkq

k6 sin �d�d� =
4�

105
�ijmnpq,

and

�ijmn = �ij�mn + �im�nj + �in�mj ,

�ijmnpq = �mnpq�ij + � jmnq�ip + �imnq� jp + � jmnp�iq

+ �imnp� jq + �ijmn�pq − �ijpq�mn,

and

�ikmens� jpqmns�pUq = 2�ikm���U�mj + 2emp�pUj + 2eqj�mUq� ,

�inmems� jkpqns�pUq = 4��inm�emk��U�nj + emj��U�kn�

+ emn��ikm��U�nj + �ijm��U�kn�� ,

�inqems� jkpmns�pUq = �inq��pUq�2emk� jpmn + 2emj�kpmn

+ � jpkn� − �nUq�� jk + 2ejk�� ,

�ijnems�kpqmns�pUq = 2��ijn�2emk��U�nm + 2emn��U�km

+ ��U�kn� + �ijkemn��U�nm� .

In Eqs. �8� and �9� we have taken into account only the terms
which contribute to the shear-current effect. In particular, we
consider the mean magnetic field in a most simple form B
= (Bx�z� ,By�z� ,0) and we take into account that By 
Bx and
S�0�1, where the mean velocity shear is U= �0,Sx ,0� and
W= �0,0 ,S�. Straightforward calculations using Eqs. �8� and
�9� and Eqs. �13� and �14� yield 
B=
B

u +
B
F, where


B
u =

�q − 1 + ��2

15�q − 1 + 2���q − 1�
�1 − � + ��1 + 2��� ,

�A14�


B
F =

a*�q − 1 + ��3

35�q − 1 + 3���q − 1�2 �2 + 3�2 − 3��sin2 �� ,

�A15�

� is the angle between the unit vector e and the background
vorticity W due to the large-scale shear. Equations �A14� and
�A15� yield Eq. �15� given in Sec. III.
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